One of the key challenges in deploying RL to real-world applications is to adapt to variations of unknown environment contexts, such as changing terrains in robotic tasks and fluctuated bandwidth in congestion control. Existing works on adaptation to unknown environment contexts either assume the contexts are the same for the whole episode or assume the context variables are Markovian. However, in many real-world applications, the environment context usually stays stable for a stochastic period and then changes in an abrupt and unpredictable manner within an episode, resulting in a segment structure, which existing works fail to address. To leverage the segment structure of piecewise stable context in real-world applications, in this paper, we propose a \textit{\textbf{Se}gmented \textbf{C}ontext \textbf{B}elief \textbf{A}ugmented \textbf{D}eep~(SeCBAD)} RL method. Our method can jointly infer the belief distribution over latent context with the posterior over segment length and perform more accurate belief context inference with observed data within the current context segment. The inferred belief context can be leveraged to augment the state, leading to a policy that can adapt to abrupt variations in context. We demonstrate empirically that SeCBAD can infer context segment length accurately and outperform existing methods on a toy grid world environment and Mujuco tasks with piecewise-stable context.
translated by 谷歌翻译
Open world object detection aims at detecting objects that are absent in the object classes of the training data as unknown objects without explicit supervision. Furthermore, the exact classes of the unknown objects must be identified without catastrophic forgetting of the previous known classes when the corresponding annotations of unknown objects are given incrementally. In this paper, we propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR. In the first stage, we pre-train a model on the current annotated data to detect objects from the current known classes, and concurrently train an additional binary classifier to classify predictions into foreground or background classes. This helps the model to build an unbiased feature representations that can facilitate the detection of unknown classes in subsequent process. In the second stage, we fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint. Furthermore, we alleviate catastrophic forgetting when the annotations of the unknown classes becomes available incrementally by using knowledge distillation and exemplar replay. Experimental results on PASCAL VOC and MS-COCO show that our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
translated by 谷歌翻译
RGB热点对象检测(SOD)结合了两个光谱,以分段图像中的视觉明显区域。大多数现有方法都使用边界图来学习锋利的边界。这些方法忽略了孤立的边界像素与其他自信像素之间的相互作用,从而导致了次优性能。为了解决这个问题,我们为基于SWIN Transformer的RGB-T SOD提出了一个职位感知关系学习网络(PRLNET)。 PRLNET探索像素之间的距离和方向关系,以增强阶层内的紧凑性和类间的分离,从而产生具有清晰边界和均匀区域的显着对象掩模。具体而言,我们开发了一个新颖的签名距离辅助模块(SDMAM)来改善编码器特征表示,该模块考虑了边界邻域中不同像素的距离关系。然后,我们使用定向字段(FRDF)设计一种功能改进方法,该方法通过利用明显对象内部的功能来纠正边界邻域的特征。 FRDF利用对象像素之间的方向信息有效地增强了显着区域的阶层紧凑性。此外,我们构成了一个纯变压器编码器 - 模块网络,以增强RGB-T SOD的多光谱特征表示。最后,我们对三个公共基准数据集进行了定量和定性实验。结果表明,我们所提出的方法的表现优于最新方法。
translated by 谷歌翻译
域的概括(DG)旨在在几个源域上学习一个模型,希望该模型能够很好地推广到看不见的目标域。域之间的分布移位包含协变量和条件偏移,模型都必须能够处理以获得更好的推广性。在本文中,提出了一种新颖的DG方法来处理通过视觉对齐和不确定性引导信仰集合(VAUE)的分布转移。具体而言,对于协变性移位,视觉对齐模块的设计旨在使图像样式的分布与常见的经验高斯分布对齐,以便可以在视觉空间中消除协变量移位。对于有条件的转变,我们基于主观逻辑和Dempster-Shafer理论采用了不确定性引导的信念集成策略。给定测试样品的条件分布是通过源域的动态组合估计的。进行了全面的实验,以证明在四个广泛使用的数据集上,即办公室,VLCS,TerrainCognita和PACS上提出的方法的出色性能。
translated by 谷歌翻译
语义本地化(SELO)是指使用语义信息(例如文本)在大规模遥感(RS)图像中获得最相关位置的任务。作为基于跨模式检索的新兴任务,Selo仅使用字幕级注释来实现语义级检索,这表明了其在统一下游任务方面的巨大潜力。尽管Selo已连续执行,但目前没有系统地探索并分析了这一紧急方向。在本文中,我们彻底研究了这一领域,并根据指标和测试数据提供了完整的基准,以推进SELO任务。首先,基于此任务的特征,我们提出了多个判别评估指标来量化SELO任务的性能。设计的显着面积比例,注意力转移距离和离散的注意距离可用于评估从像素级别和区域级别中产生的SELO图。接下来,为了为SELO任务提供标准评估数据,我们为多样化的,多语义的,多目标语义定位测试集(AIR-SLT)贡献。 AIR-SLT由22个大型RS图像和59个具有不同语义的测试用例组成,旨在为检索模型提供全面的评估。最后,我们详细分析了RS跨模式检索模型的SELO性能,探索不同变量对此任务的影响,并为SELO任务提供了完整的基准测试。我们还建立了一个新的范式来引用RS表达理解,并通过将其与检测和道路提取等任务相结合,证明了Selo在语义中的巨大优势。拟议的评估指标,语义本地化测试集和相应的脚本已在github.com/xiaoyuan1996/semanticlocalizationmetrics上访问。
translated by 谷歌翻译
时间动作定位(TAL)旨在预测未修剪视频(即开始和结束时间)中动作实例的动作类别和时间边界。通常在大多数现有作品中都采用了完全监督的解决方案,并被证明是有效的。这些解决方案中的实际瓶颈之一是所需的大量标记培训数据。为了降低昂贵的人类标签成本,本文着重于很少调查但实用的任务,称为半监督TAL,并提出了一种有效的主动学习方法,名为Al-Stal。我们利用四个步骤来积极选择具有很高信息性的视频样本,并培训本地化模型,名为\ emph {火车,查询,注释,附加}。考虑定位模型的不确定性的两个评分函数配备了ALSTAL,从而促进了视频样本等级和选择。一个人将预测标签分布的熵作为不确定性的度量,称为时间提案熵(TPE)。另一个引入了基于相邻行动建议之间的共同信息的新指标,并评估视频样本的信息性,称为时间上下文不一致(TCI)。为了验证拟议方法的有效性,我们在两个基准数据集Thumos'14和ActivityNet 1.3上进行了广泛的实验。实验结果表明,与完全监督的学习相比,AL-Stal的表现优于现有竞争对手,并实现令人满意的表现。
translated by 谷歌翻译
在小组活动识别中,层次结构框架被广泛采用以表示个人及其相应小组之间的关系,并实现了有希望的绩效。但是,现有方法在此框架中仅采用了最大/平均池,这忽略了不同个体对小组活动识别的不同贡献。在本文中,我们提出了一种新的上下文合并方案,名为Ascentive Pooling,该方案可以从个人动作到小组活动的加权信息过渡。通过利用注意机制,细心的合并是可解释的,并且能够将成员环境嵌入现有的层次模型中。为了验证拟议方案的有效性,设计了两种特定的专注合并方法,即全球细心合并(GAP)和分层的细心池(HAP)。差距奖励对小组活动意义重大的个体,而HAP通过引入亚组结构进一步考虑了层次结构。基准数据集上的实验结果表明,我们的建议在基线之外取得了显着优势,并且与最先进的方法相当。
translated by 谷歌翻译
尽管不变风险最小化(IRM)成功解决了分布式概括问题,但在实践中应用时,IRM仍可以损害最佳性。 IRM的实用变体,例如IRMV1,已被证明与IRM存在显着差距,因此即使在简单的问题中也可能无法捕获不变性。此外,IRMV1中的优化过程涉及两个内在冲突的目标,并且通常需要对客观权重进行仔细的调整。为了纠正上述问题,我们将IRM重新制定为多目标优化问题,并为IRM提出了一种新的优化方案,称为Pareto不变风险最小化(Pair)。对可以在客观冲突下适应优化指导。此外,我们表明对可以赋予实用的IRM变体能够在提供适当的指导时用原始IRM克服障碍。我们对ColoredMnist进行实验,以确认我们的理论和对的有效性。
translated by 谷歌翻译
由于多源信息集成的能力,多视图聚类吸引了很多关注。尽管在过去几十年中已经提出了许多高级方法,但其中大多数通常忽略了弱监督信息的重要性,并且无法保留多种视图的特征属性,从而导致聚类性能不令人满意。为了解决这些问题,在本文中,我们提出了一种新颖的深度观看半监督聚类(DMSC)方法,该方法在网络填充过程中共同优化了三种损失,包括多视图集群损失,半监督的成对约束损失损失和多个自动编码器重建损失。具体而言,基于KL差异的多视图聚类损失被施加在多视图数据的共同表示上,以同时执行异质特征优化,多视图加权和聚类预测。然后,我们通过创新建议将成对约束集成到多视图聚类的过程中,通过执行所学到的必须链接样本的多视图表示(不能链接样本)是相似的(不同的),以便形成的聚类结构可以可以更可信。此外,与现有的竞争对手不同,该竞争对手仅保留网络填充期间每个异质分支的编码器,我们进一步建议调整完整的自动编码器框架,其中包含编码器和解码器。通过这种方式,可以缓解特定视图和视图共享特征空间的严重腐败问题,从而使整个培训程序更加稳定。通过在八个流行图像数据集上进行的全面实验,我们证明了我们提出的方法的性能要比最先进的多视图和单视竞争对手更好。
translated by 谷歌翻译
尽管最近在欧几里得数据(例如图像)上使用不变性原理(OOD)概括(例如图像),但有关图数据的研究仍然受到限制。与图像不同,图形的复杂性质给采用不变性原理带来了独特的挑战。特别是,图表上的分布变化可以以多种形式出现,例如属性和结构,因此很难识别不变性。此外,在欧几里得数据上通常需要的域或环境分区通常需要的图形可能非常昂贵。为了弥合这一差距,我们提出了一个新的框架,以捕获图形的不变性,以在各种分配变化下进行保证的OOD概括。具体而言,我们表征了具有因果模型的图形上的潜在分布变化,得出结论,当模型仅关注包含有关标签原因最多信息的子图时,可以实现图形上的OOD概括。因此,我们提出了一个信息理论目标,以提取最大地保留不变的阶级信息的所需子图。用这些子图学习不受分配变化的影响。对合成和现实世界数据集进行的广泛实验,包括在AI ADED药物发现中充满挑战的环境,验证了我们方法的上等OOD概括能力。
translated by 谷歌翻译